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Photon number-squeezed states are of significant value in fundamental quantum research and have a wide range
of applications in quantum metrology. Most of their preparation mechanisms require precise control of quantum
dynamics and are less tolerant to dissipation. We propose a mechanism that is not subject to these restraints. In
contrast to common approaches, we exploit the self-balancing between two types of dissipation induced by
positive- and negative-temperature reservoirs to generate steady states with sub-Poissonian statistical distribu-
tions of photon numbers. We also show how to implement this mechanism with cavity optomechanical systems.
The quality of the prepared photon number-squeezed state is estimated by our theoretical model combined with
realistic parameters for various typical optomechanical systems. © 2023 Chinese Laser Press
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1. INTRODUCTION

The light field with photon number fluctuations below the
standard quantum limit, i.e., the photon number-squeezed
state, plays an indispensable role in fundamental research of
quantum optics, high-precision metrology, quantum informa-
tion processing, and other quantum applications [1–7]. The
most direct method for preparing number-squeezed states is
to give coherent light an intensity-dependent phase shift using
a Kerr medium [8–21]. Sub-Poissonian photon distributions
can then be achieved by the resulting equivalent nonlinear pho-
ton interaction. Despite the relative simplicity of the imple-
mentation, the average photon number and the squeezing
degree obtained with this method are limited by the medium.
An alternative approach to generating number-squeezed states
involves precise time control or designing complex dynamics
processes [22–42], but its low tolerance for noise and time con-
trol errors currently restricts the maximum average particle
number of squeezed states it prepared to the order of n ∼ 10.
In addition, the preparation can also be achieved through post-
selective measurements of entangled optical modes [43–51].
This can produce extremely squeezed states, whereas, increas-
ing the average photon number to the order of n ∼ 100, but the
production is conditioned on the stochastic measurement
results of some other modes, which limits its efficiency.

These approaches are hard to juggle a large average photon
number n with high squeezing degree and efficiency because
the operating and measurement errors increase rapidly as n
rises. In particular, the quantum system considered is essential
to have minimal dissipation, and the thermal noise that is al-
ways present at finite temperatures has to be eliminated to a
large extent as it causes number fluctuations. A promising sol-
ution to the problem of thermal noise in preparing number-
squeezed states is quantum-reservoir engineering (QRE) [52],
which harnesses intentional coupling to the environment as a
crucial resource of nonclassical steady-state targeting [53–55].
QRE is less susceptible to experimental noise and in some cases
thrives in a noisy environment.

In this paper, based on QRE with cavity optomechanical
coupling, we propose a scheme to generate steady photon
number-squeezed states with the help of a pair of positive
and negative-temperature optical thermal reservoirs combined
with the method of feedback control [56]. The inverse number
statistics of two reservoirs have previously been used to drive
the heat engine to work with a remarkable efficiency [57] to
build a measurement system evading quantum backaction
noise [58] and to study the emergence of coherence in phase-
transition dynamics [59]. Here, this characteristic is used to
structure sub-Poissionian photon statistics. The mean photon
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number and the number fluctuation can be changed by the
feedback control implemented through dispersive and dissipa-
tive optomechanical couplings. This leads to considerable sim-
plicity over existing methods and negates any issues involving
initial-state preparation, timing control error, and coherence
time. The squeezing quality of the prepared state is decided
by the feedback parameters of the specific optomechanical sys-
tems but is insensitive to the increase in photon numbers.
Furthermore, since the squeezed photon number statistics
are achieved by the self-feedback balance between two thermal
reservoirs, this scheme does not require additional coherent
driving and modulation of frequency as in the existing schemes
based on QRE [60,61]. We show that with this scheme, steady
states with large mean photon numbers and large degrees of
number squeezing are attainable in a variety of cavity optome-
chanical systems. Additionally, an extremely localized number
probability distribution that can be approximated as a number
state, is also possible for some systems with very light optome-
chanical oscillators and strong optomechanical couplings.

2. METHOD

The principle of our scheme can be modeled as a harmonic
oscillator with nonlinear damping. For instance, for a classical
Rayleigh–Van der Pol oscillator, whose dimensionless dynami-
cal equation is ẍ � μ�_x2 � x2 − 1�_x � x � 0, its damping
value depends on the total energy _x2 � x2. When the energy
exceeds 1, the damping is positive, corresponding to a decay
induced by a positive-temperature environment. Conversely,
when the energy falls below 1, the damping becomes negative,
corresponding to a gain induced by a negative-temperature
environment. With this negative feedback, its dynamics finally
settle in a limit cycle that satisfies the equation _x2 � x2 � 1.

Similar quantum dynamics can be described by a quantum
master equation with energy-dependent dissipation rates. For
simplicity, we consider a single-mode bosonic quantum field
coupled with a pair of thermal reservoirs of opposite near-zero
temperatures, i.e., T� ∼ 0� and T − ∼ 0−. The Lindblad
master equation writes

_ρ � −
i
ℏ
�Ĥ a, ρ� �D

�
â

ffiffiffiffiffiffi
κ�n̂

q �
ρ�D

� ffiffiffiffiffi
κ−n̂

p
â†
�
ρ, (1)

where Ĥ a � ℏωa â†â is the Hamiltonian with the bosonic an-
nihilation operator â, and the Lindblad superoperator
D�Ô�ρ � ÔρÔ† − 1

2 �Ô†Ôρ� ρÔ†Ô� with collapse operator
Ô describing the dissipative dynamics induced by thermal res-
ervoirs. The expression of Ĥ a reveals the direct relationship
between the energy and the quantum excitation number oper-
ator n̂ � â†â. So the energy-dependent feedback effect is
represented by nonlinear collapse operators Ô � â

ffiffiffiffiffiffi
κ�n̂

p
for

the positive-temperature reservoir and Ô � ffiffiffiffiffi
κ−n̂

p
â† for the

negative-temperature reservoir, respectively. In particular, the
present dissipation rates κ�n̂ do not depend on the mean exci-
tation number n̄ but on the excitation number operator n̂.

The case of dependence on n̄ corresponds to classical feed-
back control, resulting in the nonlinear evolution equation
_̄n � κ−n̄�n̄� 1� − κ�n̄ n̄. Then, the steady value of n̄ is control-
lable, depending on the specific expressions of κ�̄n , but the
steady state is always a thermal equilibrium state. As derived

in Appendix A, the steady number fluctuation Δn �ffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄2 � n̄

p
, which is independent on κ�̄n .

By contrast, the case of dependence on n̂ corresponds to
quantum feedback control, which can lead to nonequilibrium
steady states, whose number statistics are also controllable. If
the dissipation rates of two reservoirs have opposite variations
with excitation number n, the steady-state number statistics dis-
tribution is determined by two competing dissipative effects.
The probability Pn exponentially decreases versus n in the re-
gion dominated by the positive-temperature dissipation and in-
stead exponentially increases in the region dominated by the
negative-temperature one. As a result, a peak occurs in the
intermediate region, indicating the sub-Poissonian number
statistics.

Although nonlinear, the present expressions of collapse op-
erators â

ffiffiffiffiffiffi
κ�n̂

p
and

ffiffiffiffiffi
κ−n̂

p
â† imply that the coupling with the

reservoirs is a single quantum interaction, different from the
one in multiquantum form as previously used to study a quan-
tum nonlinear oscillator [62]. Then, the number statistics of
the steady state are readily available by analyzing only the time
evolution of the probabilities of neighboring number states.
With κ�n representing the eigenvalues of two dissipation rate
operators on the number state jni, the evolution equation ob-
tained from the master equation [Eq. (1)] writes (see
Appendix B for details of the derivation)

_Pn � κ�n�1�n� 1�Pn�1 − κ
�
n nPn � κ−nnPn−1

− κ−n�1�n� 1�Pn, (2)

which, as sketched in Fig. 1(a), implies that the coupling with
positive-temperature reservoir causes a downward jump from
state jni to state jn − 1i at a rate of κ�n nPn. By comparison,
the coupling with the negative-temperature reservoir causes
an upward jump from state jn − 1i to state jni at a rate of

Fig. 1. (a) Diagram of the population jump rates between neighbor-
ing Fock states. (b) Eigenvalues of the dissipation rate operators κ�n̂
versus number n. (c) Number statistics distribution of the steady state.
The probability Pn increases versus n in the region dominated by the
negative-temperature dissipation and decays in the rest region domi-
nated by the positive-temperature one, so a peak appears in the
intermediate region.
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κ−nnPn−1. The system achieves steady states when the two jump-
ing rates are equal, so the steady number probability distribu-
tion is decided by the equation

Pn

Pn−1
� κ−n

κ�n
, n � 1, 2,…�∞: (3)

When the dissipation rate κ�n increases with the number n,
and, instead, κ−n decreases as shown in Fig. 1(b), a peak in the
number probability distribution occurs near the n value satisfy-
ing κ�n ≈ κ−n. For a well-localized single-peak number distribu-
tion, the mean value n̄ is very close to the n value. By replacing
the discrete distribution with an approximate continuous dis-
tribution, see Appendix C, the number fluctuation can be es-
timated by

Δn2 ≈
�
d

dn

�
κ�n
κ−n

�����
n�n̄

�
−1

, (4)

which implies that to achieve an extremely number-squeezed
steady state requires a large derivative of the ratio between
two dissipation rates near peak n, which is realizable, for exam-
ple, when κ�n and κ−n have opposite sharp variations there.

The above derivation and conclusion do not rely on the spe-
cific expressions of κ�n̂ . In the following, as a concrete example,
we derive the steady number statistics when their expressions
are a pair of symmetry logistic functions,

κ�n̂ � κ0

1� exp
h
�k

�
n0 − n̂� 1

2

	i , (5)

which monotonically change in the interval �0, κ0� with steep-
ness k and midpoint n0 � 1∕2. We will show later these ex-
pressions are realizable in optomechanical systems.

After substituting them into Eq. (3) and iterating, one can
obtain the number probability of the steady state as

Pn � ek
P

n
i�1
�n0−i�1

2�P0 � N e−
k
2�n−n0�2 , (6)

where N is the normalization factor. This indicates a discrete
Gaussian-like probability distribution whose mean number
n̄ ≈ n0 and variance Δn2 ≈ 1∕k, respectively, coinciding with
the result given by the estimation with Eq. (4). When the steep-
ness k > n−10 , the steady state is a number-squeezed mixed state
with sub-Poissonian number statistics. When k > 1, this state
can be safely approximated as number state jn0i.

3. OPTOMECHANICAL IMPLEMENTATION

Although the above method can be applied to a variety of quan-
tum systems, recent great progress in the research of optome-
chanical feedback cooling [63–66] as well as the wide range of
feedback parameter due to the diversity of optomechanical
structure, suggests that the optomechanical system is more ad-
vantageous in implementing this approach. In what follows, we
show an optomechanical scheme for generating number-
squeezed states with large photon numbers. As depicted in
Fig. 2(a), an optical cavity is coupled with a mechanical oscil-
lator through dispersive as well as dissipative optomechanical
interactions. The optomechanical interaction is dispersive in
the sense that the cavity resonance frequency experiences a shift
depending on the displacement of the mechanical oscillator

arising from photonic radiation pressure. Differently, the dis-
sipative optomechanical interaction arises from the dependence
of the cavity dissipation rate on mechanical displacement [67].
When both interactions come into play, the mechanical oscil-
lator plays the dual role of sensor and controller, sensing the
number of photons through the dispersive coupling and then
adjusting the cavity dissipation rate through the dissipative
coupling.

The effect of coupling with a negative temperature thermal
reservoir is equivalent to introducing a negative optical dissipa-
tion, i.e., a gain. This could be provided by quantum dots or
other rare-earth-doped media and through nonlinear processes,
such as Raman or parametric amplification, which are widely
used in the experimental studies of PT-symmetric physics
[68–71]. In addition, one can also achieve this exotic reservoir
with the help of negative-temperature photonic gases recently
realized through nonlinear fiber-optic loops [72].

The total dynamics of the cavity optomechanical system are
described by the master equation [73–75],

_ρ � −
i
ℏ
�Ĥ tot, ρ� �D

� ffiffiffiffiffiffi
κ�x̂

q
â
�
ρ� κ−D�â†�ρ� Lmρ, (7)

where the Hamiltonian,

Ĥ tot � ℏ�ωa − Gx̂�â†â� p̂2

2m
� 1

2
mω2

mx̂2: (8)

The present â represents the annihilation operator of the
optical cavity mode at frequency ωa, x̂ and p̂ are the position
and momentum operators of the mechanical oscillator with
mass m and frequency ωm. The dispersive optomechanical

Fig. 2. (a) Cavity optomechanical scheme of feedback control. The
optical cavity is coupled to the mechanical oscillator through dispersive
and dissipative optomechanical interactions simultaneously. With the
dispersive coupling, the oscillator undergoes a shift proportional to the
radiation pressure force, i.e., to the photon number, and then changes
the cavity dissipation rate κ�x̂ through the dissipative coupling. Except
for the optomechanical dissipation, the cavity mode has a gain of rate
κ− induced by the negative-temperature reservoir, and the oscillator is
subjected to Brownian thermal noise. The high frequency of the op-
tical mode makes our near-zero temperature assumption reasonable.
(b) Dissipation control protocol. The positive-temperature dissipation
rate κ�x̂ is smaller than the negative-temperature one in the region
x < L but increases rapidly and overtakes it in the region x > L.
The steep change occurs mainly in a region of width d .
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coefficient G � g0∕xzpf with g0 as the vacuum optome-
chanical coupling strength and xzpf �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ∕2mωm

p
as the

zero-point fluctuation amplitude.
The dissipative coupling leads to a displacement-dependent

modulation of the cavity dissipation rate. The dependence is
commonly assumed to be linear when the displacement is small
[76,77]. When the displacement range is large, the dependence
becomes nonlinear. In general, the dissipation rate only changes
rapidly within a certain displacement range, whereas, it changes
slowly when the displacement is too small or too large. The
exact variation depends on the property of the specific opto-
mechanical system; see, for example, Fig. 3(a) of Ref. [78].
Considering the different variations in each part, we fit the
x dependence of the dissipation rate with a logistic function,

κ�x̂ � κv �
κ0

1� exp�4�L − x̂�∕d � , (9)

where κv and κ0 represent the original vacuum dissipation rate
and the amplitude of the modulation, respectively. L is the criti-
cal coupling distance indicating the displacement value at
which the dissipative rate has the fastest change, and d is
the coupling width indicating the displacement range where
the dissipation rate changes significantly.

For simplicity, here, we consider only a constant negative-
temperature dissipation rate κ−. As discussed above a prob-
ability peak at n0 occurs in the number statistics when the
negative-temperature dissipation dominates on the side n < n0
and the positive-temperature dissipation dominates on the
other side. Considering the mechanical displacement x̂ is pro-
portional to the photon number n̂, an ideal variation of cavity
dissipation rate is, as shown in Fig. 2(b), that κ�x ≪ κ− in the
region x < L − d∕2, but in the region x > L� d∕2, κ�x in-
creases rapidly with x and eventually dominates.

The dissipation of the mechanical oscillator is also consid-
ered in the form of Brownian thermal noise, described by the
superoperator,

Lmρ � −
iγ
2ℏ

�x̂, fp̂, ρg� − γ
2

�
nth �

1

2

�
�x̂, �x̂, ρ��, (10)

where γ and nth are the mechanical dissipation rate and the
thermal mean phonon number of the oscillator, respectively.

Below, we display that a number-state-sensitive optical dis-
sipation rate and then a steady photon number-squeezed state
as we proposed above are obtained in the limit of large
mechanical dissipation, i.e., γ ≫ κ�. In this limit, the oscillator
adiabatically follows the slowly varying optical field, acting as a
quick-response feedback control unit. The expression of the
optomechanical steady state and the photon number statistics
can be derived analytically from the master equation [Eq. (7)]
with the adiabatic approximation. We present the main results
here and place the detailed derivations in Appendix D.

Considering the optomechanical oscillator is trapped by a
displaced harmonic potential mω2

mx̂2∕2 − ℏGn̂ x̂, the state of
the oscillator ρm�n� closely approximates a thermal state with
a photon number n-dependent displacement. This state then
leads to an n-dependent cavity dissipation rate of the form
similar to Eq. (5),

κ�n � Tr�κ�x̂ ρm�n�� ≈ κv �
κ0

1� exp�4�L − nx1�∕d 0� , (11)

where x1 � 2g0xzpf∕ωm, representing the displacement of the
oscillator under the radiation pressure force generated by a sin-
gle photon, and d 0 � Δx∕ tanh�Δx∕d �, indicating that the ef-
fective coupling width d is blurred by the thermal fluctuation
of position, whose expression is Δx � xzpf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nth � 1

p
.

The other dissipation rate κ− for the negative-temperature
reservoir is constant, but the photon number statistics of the
steady state can still present a single-peak distribution as long
as the dissipation ratio κ−∕κ�n changes rapidly with n. The
mean photon number and the fluctuation can be estimated
by Eqs. (5) and (6), which give

n̄ ≈
L
x1

−
1

2
, (12)

Δn ≈

ffiffiffiffiffiffiffi
d 0

4x1

s
: (13)

So to achieve a photon number-squeezed distribution with a
large n̄ but a small Δn, a large critical coupling distance L and a
small coupling width d are required at the same time, which
means a sharp variation of dissipation rate κ�x takes place after a
large photon-pushed displacement. A smaller positional fluc-
tuation Δx of the oscillator is always better because it is more
favorable to obtain a smaller photon number fluctuation
through optomechanical feedback. However, the case is differ-
ent for the single-photon displacement x1 because its decrease
results in the increase of n̄ and Δn simultaneously.

The specific performance of the number-squeezed-state
preparation depends on the parameters of the optomechanical
system being used. For reference, in Table 1, we evaluate the
steady photon number statistics and the squeezing degree of
this scheme in the ideal adiabatic case with the practical param-
eters of several different optomechanical systems. The critical
coupling distance L is determined by the optomechanical dis-
placement value at which the change rate ∂κ∕∂x reaches its
maximum. The coupling width d is determined by the differ-
ence between two special displacement values at which the sec-
ond derivative ∂2κ∕∂x2 reaches its maximum and minimum,
respectively. The starred data are estimated values. Most of
these systems can achieve a very high photon number-
squeezing degree, defined by Δn2∕n̄, but the mean photon
number n̄ and the number fluctuation Δn vary significantly
between systems. For some systems with small oscillator mass
meff but strong optomechanical coupling g0, such as cold
atoms, the steady photon number fluctuation can become very
small due to their large single-photon displacements x1, and the
resulting squeezed state is close to a large-n number state.

However, in realistic experiments, there are several chal-
lenges in achieving these impressive squeezing degrees. The first
is the adiabatic limit in which the oscillator reacts quickly to the
changes in the radiation pressure force. This could be reached
by increasing the mechanical dissipation rate γ, but the accom-
panied large position fluctuations will prevent the oscillator
from having a photon-number-resolved response unless the
single-photon coupling strength g0 is large enough. The second
is the requirement for dramatic variations in the cavity dissipa-
tion rate. Such variation can be achieved in systems with large
dissipative optomechanical coupling, but large rates and ranges
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in variation are often difficult to achieve simultaneously. One
can only make trade-offs based on the specific system.

Finally, as an illustration, we analyzed the steady photon
number statistics when the adiabatic condition γ ≫ κ� is
not well satisfied. In this case, the feedback response is slow.
The backaction of the feedback control, carried out by dissipa-
tive optomechanical interaction, prevents the state of the
mechanical oscillator from being approximated as a mixture
of several n-dependent displaced thermal states. This (see
Appendix D for a detailed derivation) leads to an increase in
the effective optomechanical coupling width followed by a
modification of the cavity dissipation rate in Eq. (11),

κ�n ≈ κv �
κ0

1� exp�4ξ�L − nx1�∕d 0� , (14)

which next leads to a modification of the steady-state photon
number fluctuation in Eq. (13),

Δn ≈

ffiffiffiffiffiffiffiffiffi
d 0

4ξx1

s
, (15)

where the modification factor,

ξ � 1 −
1

cosh

� ffiffiffiffiffiffiffiffi
Δn2γ
n̄κ−

q �
� ffiffiffiffiffiγ

n̄κ−
p

sinh

� ffiffiffiffiffiffiffiffi
Δn2γ
n̄κ−

q � : (16)

The approximate value of steady-state photon number fluc-
tuation Δn can be obtained by solving Eqs. (15) and (16). In
Fig. 3(a), we show the solution as a function of the ratio γ∕κ−.
The fluctuation increases as the ratio decreases. In the limit case
γ ≪ κ−, we have ξ ≈ 0, and the response of the oscillator is too
slow to act as a feedback unit. The cavity dissipation rate tends
to be a constant, κ�n ≈ κv � κ0∕2, and then the steady-state
photon number distribution tends to be thermal. For compari-
son, in Fig. 3(a), we also label several exact values of Δn ob-
tained by numerically solving the full master equation [Eq. (7)].
They fit well with the approximate solutions. The exact photon
number probabilities Pn are shown in Fig. 3(b). For an identical
mean photon number, the localization of the number proba-
bility distribution becomes more and more significant as the
ratio γ∕κ− increases, eventually converging to a definite num-
ber, i.e., a photon number state.

4. CONCLUSIONS

To summarize, we proposed a method to deterministically gen-
erate photon number-squeezed states based on feedback control
and reservoir engineering techniques. The method did not re-
quire precise timing control of the quantum dynamics and was
tolerant to noisy environments. As a demonstration, we pro-
posed an implementation scheme with cavity optomechanical
systems. The significant photon number squeezing of the
steady state stemmed from the cooperation between a pair
of positive- and negative-temperature optical thermal reservoirs
with a feedback controller played by an optomechanical oscil-
lator. Thanks to the diversity of the optomechanical system, its
mean photon number and number fluctuation can be tuned in
a wide range, even up to approximate number states with high
photon numbers. It would be interesting to inquire whether the
other special number probability distributions can be realized
by this approach. For example, a nonmonotonic variation of
dissipation rate with the optomechanical displacement could
lead to a multipeaked probability distribution of the photon
number. Other future directions include considering more than
one optical mode and other implementations besides optome-
chanical systems.

(a)

(b)

Fig. 3. Steady-state photon number statistics obtained by approxi-
mate solution [Eq. (13)] and numerical simulation of the master equa-
tion [Eq. (7)]. (a) Photon number fluctuation Δn versus dissipation
ratio γ∕κ−. The approximate solution is plotted in a red solid line,
whereas, the numerical results are marked with a “�.” (b) Numerical
results for the steady-state probability distribution of photon number
for increasing γ∕κ−. All results for g0 � 7.07 × 102ωm, �κ0, κ−, κv� �
�10−1; 10−2; 10−3�ωm, and �d , L� � �14,7 × 104�xzpf .

Table 1. Experimental Parameters and Ideal Squeezing Degrees for Several Representative Optomechanical Systems

Setup meff (kg) ωm∕2π (Hz) g0∕2π (Hz) x1 (nm) d (nm) L (nm) Δn n Δn2∕n (dB)

Micromirror [79] 1.1 × 10−10 9.7 × 103 22 1.27 × 10−8 2.48	 50 [80] 7 × 103 4 × 109 −19
SiN membrane [76] 1 × 10−10 1.03 × 105 0.57 1 × 10−11 2.48 100 [81] 2.5 × 105 1 × 1013 −22
Micro-disk [82] 2 × 10−15 2.5 × 107 26 2.6 × 10−11 0.04 0.02 [83] 1.9 × 104 7.7 × 108 −3
Levitated particle [84] 2.8 × 10−18 3 × 105 3 [85,86] 6.3 × 10−8 0.3	 30 [87,88] 1.1 × 103 4.8 × 108 −26
Photonic crystal [89] 4 × 10−16 4.9 × 106 1.3 × 105 3.5 × 10−6 10 100 8.4 × 102 2.9 × 107 −16
Cold atomic gases [90] 2.4 × 10−22 7 × 104 3.5 × 106 70 25	 2500 0.3 34.8 −26
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APPENDIX A: STEADY STATE UNDER
CLASSICAL FEEDBACK CONTROL

Under the assumption of classical feedback control, the dissi-
pation rate is no longer a quantum operator but a value that
depends on the mean excitation number n̄, that is,
κ�n̂ → κ�̄n . Then, according to the master equation [Eq. (1)],
one can obtain the time evolution equations for the first-
and second-order moments of the excitation number operator,

dhn̂i
dt

� κ−n̄�hn̂i � 1� − κ�n̄ hn̂i, (A1)

dhn̂2i
dt

� κ−n̄�hn̂i − 2hn̂2i� � κ�n̄ �2hn̂2i � 3hn̂i � 1�, (A2)

which, in the steady-state case, lead to the equation
hn̂2i � 2hn̂i2 � hn̂i. So the normalized second-order correla-
tion function g �2� � 2, which implies that the steady state is
a thermal state.

APPENDIX B: DYNAMICAL EQUATION FOR
NUMBER-STATE POPULATION

From the master equation [Eq. (1)], we can derive the evolu-
tion equations for the population on each Fock state,

_Pn � hnj_ρjni

�
D
n
����− i

ℏ
�Ĥ a, ρ� �D

�
â

ffiffiffiffiffiffi
κ�n̂

q �
ρ�D

h ffiffiffiffiffi
κ−n̂

p
â†
i
ρ

����nE,
(B1)

where the term hnj�Ĥ a, ρ�jni � 0, and considering the eigeneq-
uations of the dissipative rate operators, i.e., κ�n̂ jni � κ�n jni,
and the formulas âjni � ffiffiffi

n
p jn − 1i and â†jni �ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p jn� 1i, the terms of the Lindblad super operators
contribute as follows:D

n
���â ffiffiffiffiffiffi

κ�n̂

q
ρ

ffiffiffiffiffiffi
κ�n̂

q
â†
���nE � κ�n�1�n� 1�hn� 1jρjn� 1i,

(B2)D
n
��� ffiffiffiffiffiffi

κ�n̂

q
â†â

ffiffiffiffiffiffi
κ�n̂

q
ρ
���nE � κ�n nhnjρjni, (B3)

hnj ffiffiffiffiffi
κ−n̂

p
â†ρâ

ffiffiffiffiffi
κ−n̂

p jni � κ−nnhn − 1jρjn − 1i, (B4)

hnjâκ−n̂â†ρjni � κ−n�1�n� 1�hnjρjni: (B5)

Then, we obtain the time evolution of Pn in the form shown
in Eq. (2).

APPENDIX C: ESTIMATION OF NUMBER
FLUCTUATION

According to the parameter estimation theory, the uncertainty
of the parameter to be estimated is equivalent to the peak width
of the likelihood function L�θjx�. For a single-peaked proba-
bility distribution P�x�, if one shifts the random variable x to
x � θ, then, the peak width of the likelihood function of
parameter θ is equal to the peak width of the probability dis-
tribution of the random variable x, i.e.,

var�x� � var�θ�
� −�∂2θ ln L�θjxi�jθ�x0−xi �−1
� −�∂2θ ln P�xi � θ�jθ�x0−xi �−1, (C1)

where xi is a member of the sampling and x0 is the peak value
point of the distribution P�x�. With the substitution
x � θ� xi we have var�x� � −�∂2x ln P�x�jx�x0 �−1. So the vari-
ance of the single-peaked probability distribution P�n� can be
estimated by 1∕Δn2 � −∂2n ln P�n�jn�n̄.

It should be noted that this derivation is only applicable in a
single-peaked probability distribution because the likelihood
function corresponding to a single sampling is also single
peaked, and the peak width is equal to the variance of the ran-
dom variable.

APPENDIX D: STEADY STATE OF THE
OPTOMECHANICAL FEEDBACK CONTROL
SYSTEM

Considering there is no coherent input to the cavity mode but
only decoherence induced by thermal dissipation, the steady state
of the cavity optomechanical system can be expressed as

ρs �
X
n

Pnjnihnj ⊗ ρm�n�, (D1)

where jni represents the n-photon number state with probability
Pn and ρm�n� is the density matrix of the mechanical oscillator
that depends on photon number n.

To determine the values of Pn, we substitute a state of this
form into the master equation [Eq. (7)]. After tracing out the
part of the mechanical oscillator, we obtain
_Pn � �n� 1�Pn�1κ

�
n�1 − nPnκ

�
n � nPn−1κ

− − �n� 1�Pnκ
−,

(D2)
where κ�n � Tr�κ�x̂ ρm�n��, representing the mean value of the
dissipation rate operator under the oscillator state ρm�n�. Similarly,
the evolution equation of ρm�n� can be obtained from the master
equation [Eq. (7)] by tracing out the part of the photon,

_ρm�n� � −
i
ℏ
�Ĥ n, ρm�n�� � Lmρm�n�

� Pn�1

Pn
�n� 1�κ�n�1�ρm�n� 1� − ρm�n��

� Pn−1

Pn
nκ−�ρm�n − 1� − ρm�n��, (D3)

where Ĥ n � p̂2∕2m� mω2
mx̂2∕2 − ℏGnx̂, indicating the ef-

fective Hamiltonian of the oscillator driven by the optical force
generated by n photons. The second term on the right side of
the equation represents the damping induced by mechanical
dissipation, whereas, the last two terms are induced by dissipa-
tive optomechanical interaction and represent the backaction of
the feedback control.

Fast feedback limit—When γ ≫ κ�, the dissipation term
Lmρm�n� dominates in Eq. (D3), and the backaction of
feedback control is negligible. Then, the state of the oscillator
can be approximated as a thermal state with a photon number
n-dependent displacement, that is, ρm�n� ≈ D�g0n∕ωm�⋅
ρthD†�g0n∕ωm� where the displacement operator D�α� �
exp�αb̂† − α	b̂� with b̂ the phonon annihilation operator of
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the mechanical oscillator. With this approximated expression,
the n-dependent displacement xn � Tr�x̂ρm�n�� ≈ nx1 and the
n-dependent dissipation rate is decided by the integral,

κ�n � Tr�κ�x̂ ρm�n��

≈
Z 


κv �
κ0

1� exp�4�L − x�∕d �

�
pn�x�dx, (D4)

where the n-dependent position probability,

pn�x� � hxjρm�n�jxi ≈
1ffiffiffiffiffi
2π

p
Δx

exp

�
−
�x − xn�2
2Δx2

�
, (D5)

with the thermal position fluctuation defined as Δx �
xzpf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nth � 1

p
. If the optomechanical coupling width

d ≫ Δx, the integral has an approximate expression,

κ�n ≈ κv �
κ0

1� exp�4�L − nx1�∕d 0� : (D6)

This n-dependent dissipation rate leads to a nonequilibrium
steady state of the optical mode.

Slow feedback case—When γ ∼ κ�, the last two terms on the
right side of Eq. (D3) are no longer negligible. The displace-
ment of the oscillator depends not only on the photon number,
but also on the number fluctuation. Due to the complexity of
Eq. (D3), an analytical solution is difficult to obtain, but we
can derive the evolution equation for the mean displacement,

_xn � Tr�x̂ _ρm�n��

� −γ�xn − nx1� �
Pn�1

Pn
�n� 1�κ�n�1�xn�1 − xn�

� Pn−1

Pn
nκ−�xn−1 − xn�, (D7)

where we have adiabatically eliminated the equation of the mo-
mentum to focus on the coupling between the photon number
and the displacement and x1 � 2g0xzpf∕ωm representing the
single-photon displacement of the oscillator.

An approximate solution to Eq. (D7) is given by
xn � x1n̄� ξx1�n − n̄�, where n̄ � L∕x1 and the factor ξ is
as follows:

ξ � 1 −
1

cosh

� ffiffiffiffiffiffiffiffi
Δn2γ
n̄κ−

q �
� ffiffiffiffiffiγ

n̄κ−
p

sinh

� ffiffiffiffiffiffiffiffi
Δn2γ
n̄κ−

q � : (D8)

Substituting xn into Eqs. (D4) and (D5), the approximate
expression of n-dependent dissipation rate becomes

κ�n ≈ κv �
κ0

1� exp�4ξ�L − nx1�∕d 0� , (D9)

which means that the effective coupling width is further in-
creased to d 0∕ξ, ultimately increasing the steady-state photon
number fluctuations.

In the limit case of γ ≪ κ�, the factor ξ ∼ 0, so
κ�n ∼ κv � κ0∕2, and no longer depends on n. This leads to
a thermal equilibrium steady state of the optical mode.
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